Electrically controllable sudden reversals in spin and valley polarization in silicene
نویسندگان
چکیده
We study the spin and valley dependent transport in a silicene superlattice under the influence of a magnetic exchange field, a perpendicular electric field and a voltage potential. It is found that a gate-voltage-controllable fully spin and valley polarized current can be obtained in the proposed device, and the spin and valley polarizations are sensitive oscillatory functions of the voltage potential. In properly designed superlattice structure, the spin and valley polarizations can be reversed from -100% to 100% by a slight change in the external voltage potential. The energy dispersion relations of the superlattice structure are also investigated, which helps us to understand the effects of the superlattice structure. The switching of the spin direction and the valley of the tunneling electrons by a gate voltage enables new possibilities for spin or valley control in silicene-based spintronics and valleytronics.
منابع مشابه
Quantum Anomalous Hall Effect and Tunable Topological States in 3d Transition Metals Doped Silicene
Silicene is an intriguing 2D topological material which is closely analogous to graphene but with stronger spin orbit coupling effect and natural compatibility with current silicon-based electronics industry. Here we demonstrate that silicene decorated with certain 3d transition metals (Vanadium) can sustain a stable quantum anomalous Hall effect using both analytical model and first-principles...
متن کاملGated silicene as a tunable source of nearly 100% spin-polarized electrons.
Silicene is a one-atom-thick two-dimensional crystal of silicon with a hexagonal lattice structure that is related to that of graphene but with atomic bonds that are buckled rather than flat. This buckling confers advantages on silicene over graphene, because it should, in principle, generate both a band gap and polarized spin-states that can be controlled with a perpendicular electric field. H...
متن کاملValley-polarized metals and quantum anomalous Hall effect in silicene.
Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low-energy structure of silicene is described by Dirac electrons with relatively large spin-orbit interactions due to its buckled structure. The key observation is that the band structure is controllable by applying electric field to silicene. We...
متن کاملSpin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials
We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of w...
متن کاملElectrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide.
Electrically controlling the flow of charge carriers is the foundation of modern electronics. By accessing the extra spin degree of freedom (DOF) in electronics, spintronics allows for information processes such as magnetoresistive random-access memory. Recently, atomic membranes of transition metal dichalcogenides (TMDCs) were found to support unequal and distinguishable carrier distribution i...
متن کامل